概述
OpenCV 中有七种形态学转换操作:腐蚀、膨胀、开运算、闭运算、形态学梯度、礼帽和黑帽。
API参考表
中文名 英文名 API 原理 个人理解腐蚀
erode
erosion = cv2.erode(src=girl_pic, kernel=kernel)
对滑窗中的像素点按位乘,再从中取最小值点作为输出。可以去除浅色噪点
浅色成分被腐蚀
膨胀
dilate
dilation = cv2.dilate(src=girl_pic, kernel=kernel)
对滑窗中的像素点按位乘,再从中取最大值点作为输出。可以增加浅色成分
浅色成分得膨胀
开运算
morphology-open
opening = cv2.morphologyEx(girl_pic, cv2.MORPH_OPEN, kernel)
先腐蚀,后膨胀,去除白噪点
先合再开,对浅色成分不利
闭运算
morphology-close
closing = cv2.morphologyEx(girl_pic, cv2.MORPH_CLOSE, kernel)
先膨胀,后腐蚀,去除黑噪点
先开再合,浅色成分得势
形态学梯度
morphology-grandient
gradient = cv2.morphologyEx(girl_pic, cv2.MORPH_GRADIENT, kernel)
一幅图像腐蚀与膨胀的区别,可以得到轮廓
数值上解释为:膨胀减去腐蚀
礼帽
tophat
tophat = cv2.morphologyEx(girl_pic, cv2.MORPH_TOPHAT, kernel)
原图像减去开运算的差
数值上解释为:原图像减去开运算
黑帽
blackhat
blackhat = cv2.morphologyEx(girl_pic, cv2.MORPH_BLACKHAT, kernel)
闭运算减去原图像的差
数值上解释为:闭运算减去原图像
实验思路:编写代码,实现OpenCV自带的七种形态学转换操作,并将生成的图片保存到 pic 文件夹中;使用礼帽生成的图像加上开运算生成的图像,看看是否能得到原图,并将生成的图片保存到 pic 文件夹中;使用闭运算生成的图像减去黑帽生成的图像,看看是否能得到原图,并将生成的图片保存到 pic 文件夹中;如果成功,则验证自己的思路是正确的。
Demo:原始图像(../pic/girl.jpg):
七种形态学转换操作:
腐蚀(../pic/erosion.jpg):
膨胀(../pic/dilation.jpg):
开运算(../pic/opening.jpg):
闭运算(../pic/closing.jpg):
形态学梯度(../pic/gradient.jpg):
礼帽(../pic/tophat.jpg):
黑帽(../pic/blackhat.jpg):
通过转换后的图像得到原图像:
cv2.add(open, tophat)(../pic/open_and_tophat.jpg):
close-blackhat(../pic/close_subtract_blackhat.jpg):
附上自己编写的实验代码:
# -*- coding: utf-8 -*-import cv2import numpy as np<p>girl_pic = cv2.imread('../pic/girl.jpg')kernel = np.ones((5, 5), np.uint8)</p><h1>腐蚀</h1><p>erosion = cv2.erode(src=girl_pic, kernel=kernel)cv2.imshow('erosion', erosion)cv2.waitKey(2000)cv2.destroyAllWindows()cv2.imwrite('../pic/erosion.jpg', erosion)</p><h1>膨胀</h1><p>dilation = cv2.dilate(src=girl_pic, kernel=kernel)cv2.imshow('dilation', dilation)cv2.waitKey(2000)cv2.destroyAllWindows()cv2.imwrite('../pic/dilation.jpg', dilation)</p><h1>开运算</h1><p>opening = cv2.morphologyEx(girl_pic, cv2.MORPH_OPEN, kernel)cv2.imshow('opening', opening)cv2.waitKey(2000)cv2.destroyAllWindows()cv2.imwrite('../pic/opening.jpg', opening)</p><h1>闭运算</h1><p>closing = cv2.morphologyEx(girl_pic, cv2.MORPH_CLOSE, kernel)cv2.imshow('closing', closing)cv2.waitKey(2000)cv2.destroyAllWindows()cv2.imwrite('../pic/closing.jpg', closing)</p><h1>形态学梯度</h1><p>gradient = cv2.morphologyEx(girl_pic, cv2.MORPH_GRADIENT, kernel)cv2.imshow('gradient', gradient)cv2.waitKey(2000)cv2.destroyAllWindows()cv2.imwrite('../pic/gradient.jpg', gradient)</p><h1>礼帽</h1><p>tophat = cv2.morphologyEx(girl_pic, cv2.MORPH_TOPHAT, kernel)cv2.imshow('tophat', tophat)cv2.waitKey(2000)cv2.destroyAllWindows()cv2.imwrite('../pic/tophat.jpg', tophat)</p><h1>黑帽</h1><p>blackhat = cv2.morphologyEx(girl_pic, cv2.MORPH_BLACKHAT, kernel)cv2.imshow('blackhat', blackhat)cv2.waitKey(2000)cv2.destroyAllWindows()cv2.imwrite('../pic/blackhat.jpg', blackhat)</p><h1>cv2.add(open, tophat)</h1><p>open_and_tophat = cv2.add(opening, tophat)cv2.imshow('open_and_tophat', open_and_tophat)cv2.waitKey(2000)cv2.destroyAllWindows()cv2.imwrite('../pic/open_and_tophat.jpg', open_and_tophat)</p><h1>close-blackhat</h1><p>close_subtract_blackhat = closing - blackhatcv2.imshow('close_subtract_blackhat', close_subtract_blackhat)cv2.waitKey(2000)cv2.destroyAllWindows()cv2.imwrite('../pic/close_subtract_blackhat.jpg', close_subtract_blackhat)
登录后复制
文章来自互联网,不代表电脑知识网立场。发布者:,转载请注明出处:https://www.pcxun.com/n/630219.html